佳学基因遗传病基因检测机构排名,三甲医院的选择

基因检测就找佳学基因!

热门搜索
  • 癫痫
  • 精神分裂症
  • 鱼鳞病
  • 白癜风
  • 唇腭裂
  • 多指并指
  • 特发性震颤
  • 白化病
  • 色素失禁症
  • 狐臭
  • 斜视
  • 视网膜色素变性
  • 脊髓小脑萎缩
  • 软骨发育不全
  • 血友病

客服电话

4001601189

在线咨询

CONSULTATION

一键分享

CLICK SHARING

返回顶部

BACK TO TOP

分享基因科技,实现人人健康!
×
查病因,阻遗传,哪里干?佳学基因准确有效服务好! 靶向用药怎么搞,佳学基因测基因,优化疗效 风险基因哪里测,佳学基因
当前位置:    致电4001601189! > 解决方案 > 靶向药物 >

【佳学基因检测】血液系统遗传病的基因矫正治疗的国际国内进展

佳学基因致力于遗传病的基因突变信息解码和基因矫正,总结和归纳了截止到2021年前的血液系统、免疫性遗传病的基因编辑、基因治疗方案。这里给出了文献列表

佳学基因检测】血液系统遗传病的基因矫正治疗国际国内进展

导读:

佳学基因致力于遗传病的基因突变信息解码和基因矫正,总结和归纳了截止到2021年前的血液系统、免疫性遗传病的基因编辑、基因治疗方案。这里给出了文献列表

文献列表:

1. Papapetrou: E.P., Zoumbos N.C., Athanassiadou A. Genetic modification of hematopoietic stem cells with nonviral systems: Past progress and future prospects. Gene Ther. 2005;12:S118–S130. doi: 10.1038/sj.gt.3302626. [PubMed] [CrossRef] []

2. Gatti R., Meuwissen H., Allen H., Hong R., Good R. Immunological Reconstitution of Sex-Linked Lymphopenic Immunological Deficiency. Lancet. 1968;292:1366–1369. doi: 10.1016/S0140-6736(68)92673-1. [PubMed] [CrossRef] []

3. Steward C.G., Jarisch A. Haemopoietic stem cell transplantation for genetic disorders. Arch. Dis. Child. 2005;90:1259–1263. doi: 10.1136/adc.2005.074278. [PMC free article] [PubMed] [CrossRef] []

4. Michlitsch J., Walters M. Recent Advances in Bone Marrow Transplantation in Hemoglobinopathies. Curr. Mol. Med. 2008;8:675–689. doi: 10.2174/156652408786241393. [PubMed] [CrossRef] []

5. Duarte R.F., Labopin M., Bader P., Basak G.W., Bonini C., Chabannon C., Corbacioglu S., Dreger P., Dufour C. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2019. Bone Marrow Transplant. 2019;54:1525–1552. doi: 10.1038/s41409-019-0516-2. [PubMed] [CrossRef] []

6. Mogul M.J. Unrelated cord blood transplantation vs matched unrelated donor bone marrow transplantation: The risks and benefits of each choice. Bone Marrow Transplant. 2000;25:S58–S60. doi: 10.1038/sj.bmt.1702372. [PubMed] [CrossRef] []

7. Touzot F., Moshous D., Creidy R., Neven B., Frange P., Cros G., Caccavelli L., Blondeau J., Magnani A., Luby J.-M., et al. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1. Blood. 2015;125:3563–3569. doi: 10.1182/blood-2014-12-616003. [PubMed] [CrossRef] []

8. Daniel-Moreno A., Lamsfus-Calle A., Raju J., Antony J.S., Handgretinger R., Mezger M. CRISPR/Cas9-modified hematopoietic stem cells—present and future perspectives for stem cell transplantation. Bone Marrow Transplant. 2019;54:1940–1950. doi: 10.1038/s41409-019-0510-8. [PubMed] [CrossRef] []

9. Dunbar C.E., High K., Joung J.K., Kohn D.B., Ozawa K., Sadelain M. Gene therapy comes of age. Science. 2018;359:eaan4672. doi: 10.1126/science.aan4672. [PubMed] [CrossRef] []

10. Cavazzana-Calvo M., Payen E., Negre O., Wang G., Hehir K., Fusil F., Down J., Denaro M., Brady T., Westerman K., et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467:318–322. doi: 10.1038/nature09328. [PMC free article] [PubMed] [CrossRef] []

11. Thompson A.A., Walters M.C., Kwiatkowski J., Rasko J.E., Ribeil J.-A., Hongeng S., Magrin E., Schiller G.J., Payen E., Semeraro M., et al. Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. N. Engl. J. Med. 2018;378:1479–1493. doi: 10.1056/NEJMoa1705342. [PubMed] [CrossRef] []

12. Ribeil J.-A., Hacein-Bey-Abina S., Payen E., Magnani A., Semeraro M., Magrin E., Caccavelli L., Neven B., Bourget P., El Nemer W., et al. Gene Therapy in a Patient with Sickle Cell Disease. N. Engl. J. Med. 2017;376:848–855. doi: 10.1056/NEJMoa1609677. [PubMed] [CrossRef] []

13. Marktel S., Scaramuzza S., Cicalese M.P., Giglio F., Galimberti S., Lidonnici M.R., Calbi V., Assanelli A., Bernardo M.E., Rossi C., et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat. Med. 2019;25:234–241. doi: 10.1038/s41591-018-0301-6. [PubMed] [CrossRef] []

14. Río P., Navarro S., Wang W., Sánchez-Domínguez R., Pujol R.M., Segovia J.C., Bogliolo M., Merino E., Wu N., Salgado R., et al. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat. Med. 2019;25:1396–1401. doi: 10.1038/s41591-019-0550-z. [PubMed] [CrossRef] []

15. Abina S.H.-B., Gaspar H.B., Blondeau J., Caccavelli L., Charrier S., Buckland K., Picard C., Six E., Himoudi N., Gilmour K., et al. Outcomes Following Gene Therapy in Patients with Severe Wiskott-Aldrich Syndrome. JAMA. 2015;313:1550–1563. doi: 10.1001/jama.2015.3253. [PMC free article] [PubMed] [CrossRef] []

16. Aiuti A., Biasco L., Scaramuzza S., Ferrua F., Cicalese M.P., Baricordi C., Dionisio F., Calabria A., Giannelli S., Castiello M.C., et al. Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science. 2013;341:1233151. doi: 10.1126/science.1233151. [PMC free article] [PubMed] [CrossRef] []

17. De Ravin S.S., Wu X., Moir S., Anaya-O’Brien S., Kwatemaa N., Littel P., Theobald N., Choi U., Su L., Marquesen M., et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 2016;8:335ra57. doi: 10.1126/scitranslmed.aad8856. [PMC free article] [PubMed] [CrossRef] []

18. Eichler F., Duncan C., Musolino P.L., Orchard P.J., De Oliveira S., Thrasher A., Armant M., Dansereau C., Lund T.C., Miller W.P., et al. Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy. N. Engl. J. Med. 2017;377:1630–1638. doi: 10.1056/NEJMoa1700554. [PMC free article] [PubMed] [CrossRef] []

19. Cartier N., Hacein-Bey-Abina S., Bartholomae C.C., Veres G., Schmidt M., Kutschera I., Vidaud M., Abel U., Dal-Cortivo L., Caccavelli L., et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326:818–823. doi: 10.1126/science.1171242. [PubMed] [CrossRef] []

20. Sessa M., Lorioli L., Fumagalli F., Acquati S., Redaelli D., Baldoli C., Canale S., Lopez I.D., Morena F., Calabria A., et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet. 2016;388:476–487. doi: 10.1016/S0140-6736(16)30374-9. [PubMed] [CrossRef] []

21. Stein S., Ott M.G., Schultze-Strasser S., Jauch A., Burwinkel B., Kinner A., Schmidt M., Krämer A., Schwäble J., Glimm H., et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat. Med. 2010;16:198–204. doi: 10.1038/nm.2088. [PubMed] [CrossRef] []

22. Imren S., Fabry M.E., Westerman K., Pawliuk R., Tang P., Rosten P.M., Nagel R.L., Leboulch P., Eaves C.J., Humphries R.K. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Investig. 2004;114:953–962. doi: 10.1172/JCI200421838. [PMC free article] [PubMed] [CrossRef] []

23. Hargrove P.W., Kepes S., Hanawa H., Obenauer J.C., Pei D., Cheng C., Gray J.T., Neale G., Persons D.A. Globin lentiviral vector insertions can perturb the expression of endogenous genes in beta-thalassemic hematopoietic cells. Mol. Ther. 2008;16:525–533. doi: 10.1038/sj.mt.6300394. [PubMed] [CrossRef] []

24. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., Le Deist F., Wulffraat N., McIntyre E., Radford I., Villeval J.-L., Fraser C.C., Cavazzana-Calvo M., et al. A Serious Adverse Event after Successful Gene Therapy for X-Linked Severe Combined Immunodeficiency. N. Engl. J. Med. 2003;348:255–256. doi: 10.1056/NEJM200301163480314. [PubMed] [CrossRef] []

25. Howe S.J., Mansour M.R., Schwarzwaelder K., Bartholomae C., Hubank M., Kempski H., Brugman M.H., Pike-Overzet K., Chatters S.J., De Ridder D., et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 2008;118:3143–3150. doi: 10.1172/JCI35798. [PMC free article] [PubMed] [CrossRef] []

26. Luis A. The Old and the New: Prospects for Non-Integrating Lentiviral Vector Technology. Viruses. 2020;12:1103. doi: 10.3390/v12101103. [PMC free article] [PubMed] [CrossRef] []

27. Hardee C.L., Arévalo-Soliz L.M., Hornstein B.D., Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes. 2017;8:65. doi: 10.3390/genes8020065. [PMC free article] [PubMed] [CrossRef] []

28. Shrivastav M., De Haro L.P., Nickoloff J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134–147. doi: 10.1038/cr.2007.111. [PubMed] [CrossRef] []

29. Patsali P., Kleanthous M., Lederer C.W. Disruptive Technology: CRISPR/Cas-Based Tools and Approaches. Mol. Diagn. Ther. 2019;23:187–200. doi: 10.1007/s40291-019-00391-4. [PMC free article] [PubMed] [CrossRef] []

30. Papasavva P., Kleanthous M., Lederer C.W. Rare Opportunities: CRISPR/Cas-Based Therapy Development for Rare Genetic Diseases. Mol. Diagn. Ther. 2019;23:201–222. doi: 10.1007/s40291-019-00392-3. [PMC free article] [PubMed] [CrossRef] []

31. Frangoul H., Altshuler D., Cappellini M.D., Chen Y.-S., Domm J., Eustace B.K., Foell J., De La Fuente J., Grupp S., Handgretinger R., et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021;384:252–260. doi: 10.1056/NEJMoa2031054. [PubMed] [CrossRef] []

32. Carroll D. Genome Engineering with Targetable Nucleases. Annu. Rev. Biochem. 2014;83:409–439. doi: 10.1146/annurev-biochem-060713-035418. [PubMed] [CrossRef] []

33. Silva G., Poirot L., Galetto R., Smith J., Montoya G., Duchateau P., Paques F. Meganucleases and Other Tools for Targeted Genome Engineering: Perspectives and Challenges for Gene Therapy. Curr. Gene Ther. 2011;11:11–27. doi: 10.2174/156652311794520111. [PMC free article] [PubMed] [CrossRef] []

34. Urnov F., Rebar E.J., Holmes M.C., Zhang H.S., Gregory P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010;11:636–646. doi: 10.1038/nrg2842. [PubMed] [CrossRef] []

35. Scharenberg A., Duchateau P., Smith J. Genome Engineering with TAL-Effector Nucleases and Alternative Modular Nuclease Technologies. Curr. Gene Ther. 2013;13:291–303. doi: 10.2174/15665232113139990026. [PubMed] [CrossRef] []

36. Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482:331–338. doi: 10.1038/nature10886. [PubMed] [CrossRef] []

37. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. [PMC free article] [PubMed] [CrossRef] []

38. Walton R.T., Christie K.A., Whittaker M.N., Kleinstiver B.P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368:290–296. doi: 10.1126/science.aba8853. [PMC free article] [PubMed] [CrossRef] []

39. Huang T.P., Zhao K.T., Miller S.M., Gaudelli N.M., Oakes B.L., Fellmann C., Savage D.F., Liu D.R. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 2019;37:626–631. doi: 10.1038/s41587-019-0134-y. [PMC free article] [PubMed] [CrossRef] []

40. Naeem M., Majeed S., Hoque M.Z., Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells. 2020;9:1608. doi: 10.3390/cells9071608. [PMC free article] [PubMed] [CrossRef] []

41. Schiroli G., Conti A., Ferrari S., DELLA Volpe L., Jacob A., Albano L., Beretta S., Calabria A., Vavassori V., Gasparini P., et al. Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell. 2019;24:551–565.e8. doi: 10.1016/j.stem.2019.02.019. [PMC free article] [PubMed] [CrossRef] []

42. Ferrari S., Jacob A., Beretta S., Unali G., Albano L., Vavassori V., Cittaro D., Lazarevic D., Brombin C., Cugnata F., et al. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nat. Biotechnol. 2020;38:1298–1308. doi: 10.1038/s41587-020-0551-y. [PMC free article] [PubMed] [CrossRef] []

43. Genovese P., Schiroli G., Escobar G., Di Tomaso T., Firrito C., Calabria A., Moi D., Mazzieri R., Bonini C., Holmes M.C., et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nat. Cell Biol. 2014;510:235–240. doi: 10.1038/nature13420. [PMC free article] [PubMed] [CrossRef] []

44. Humbert O., Radtke S., Samuelson C., Carrillo R.R., Perez A.M., Reddy S.S., Lux C., Pattabhi S., Schefter L.E., Negre O., et al. Therapeutically relevant engraftment of a CRISPR-Cas9–edited HSC-enriched population with HbF reactivation in nonhuman primates. Sci. Transl. Med. 2019;11:eaaw3768. doi: 10.1126/scitranslmed.aaw3768. [PubMed] [CrossRef] []

45. Wang J., Exline C.M., Declercq J.J., Llewellyn G.N., Hayward S.B., Li P.W.-L., Shivak D.A., Surosky R.T., Gregory P.D., Holmes M.C., et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 2015;33:1256–1263. doi: 10.1038/nbt.3408. [PMC free article] [PubMed] [CrossRef] []

46. Haapaniemi E., Botla S., Persson J., Schmierer B., Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 2018;24:927–930. doi: 10.1038/s41591-018-0049-z. [PubMed] [CrossRef] []

47. Ihry R.J., Worringer K.A., Salick M.R., Frias E., Ho D., Theriault K., Kommineni S., Chen J., Sondey M., Ye C., et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018;24:939–946. doi: 10.1038/s41591-018-0050-6. [PubMed] [CrossRef] []

48. Kosicki M., Tomberg K., Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018;36:765–771. doi: 10.1038/nbt.4192. [PMC free article] [PubMed] [CrossRef] []

49. Leibowitz M.L., Papathanasiou S., Doerfler P.A., Blaine L.J., Sun L., Yao Y., Zhang C.-Z., Weiss M.J., Pellman D. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 2021:1–11. doi: 10.1038/s41588-021-00838-7. [PMC free article] [PubMed] [CrossRef] []

50. Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–424. doi: 10.1038/nature17946. [PMC free article] [PubMed] [CrossRef] []

51. Huang T.P., Newby G.A., Liu D.R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 2021;16:1089–1128. doi: 10.1038/s41596-020-00450-9. [PubMed] [CrossRef] []

52. Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J.M., Chen P.J., Wilson C., Newby G.A., Raguram A., et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–157. doi: 10.1038/s41586-019-1711-4. [PMC free article] [PubMed] [CrossRef] []

53. Amabile A., Migliara A., Capasso P., Biffi M., Cittaro D., Naldini L., Lombardo A.L. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell. 2016;167:219–232.e14. doi: 10.1016/j.cell.2016.09.006. [PMC free article] [PubMed] [CrossRef] []

54. Nuñez J.K., Chen J., Pommier G.C., Cogan J.Z., Replogle J.M., Adriaens C., Ramadoss G.N., Shi Q., Hung K.L., Samelson A.J., et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503–2519.e17. doi: 10.1016/j.cell.2021.03.025. [PubMed] [CrossRef] []

55. Czechowicz A., Palchaudhuri R., Scheck A., Hu Y., Hoggatt J., Saez B., Pang W.W., Mansour M.K., Tate T.A., Chan Y.Y., et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-018-08201-x. [PMC free article] [PubMed] [CrossRef] []

56. Wang H., Georgakopoulou A., Psatha N., Li C., Capsali C., Samal H.B., Anagnostopoulos A., Ehrhardt A., Izsvák Z., Papayannopoulou T., et al. In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia. J. Clin. Investig. 2018;129:598–615. doi: 10.1172/JCI122836. [PMC free article] [PubMed] [CrossRef] []

57. Wang H., Georgakopoulou A., Li C., Liu Z., Gil S., Bashyam A., Yannaki E., Anagnostopoulos A., Pande A., Izsvák Z., et al. Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements. JCI Insight. 2020;5:e139538. doi: 10.1172/jci.insight.139538. [PMC free article] [PubMed] [CrossRef] []

58. Shangaris P., Loukogeorgakis S.P., Subramaniam S., Flouri C., Jackson L.H., Wang W., Blundell M.P., Liu S., Eaton S., Bakhamis N., et al. In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Sci. Rep. 2019;9:1–17. [PMC free article] [PubMed] []

59. Li C., Wang H., Georgakopoulou A., Gil S., Yannaki E., Lieber A. In Vivo HSC Gene Therapy Using a Bi-modular HDAd5/35++ Vector Cures Sickle Cell Disease in a Mouse Model. Mol. Ther. 2021;29:822–837. doi: 10.1016/j.ymthe.2020.09.001. [PMC free article] [PubMed] [CrossRef] []

60. Cannon P., Asokan A., Czechowicz A., Hammond P., Kohn D.B., Lieber A., Malik P., Marks P., Porteus M., Verhoeyen E., et al. Safe and Effective In Vivo Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Hum. Gene Ther. 2021;32:31–42. doi: 10.1089/hum.2020.263. [PubMed] [CrossRef] []

61. Riley R.S., Kashyap M.V., Billingsley M.M., White B., Alameh M.-G., Bose S.K., Zoltick P.W., Li H., Zhang R., Cheng A.Y., et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 2021;7:eaba1028. doi: 10.1126/sciadv.aba1028. [PMC free article] [PubMed] [CrossRef] []

62. Li C., Georgakopoulou A., Mishra A., Gil S., Hawkins R.D., Yannaki E., Lieber A. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv. 2021;5:1122–1135. doi: 10.1182/bloodadvances.2020003702. [PMC free article] [PubMed] [CrossRef] []

63. Brave M., Farrell A., Lin S.C., Ocheltree T., Miksinski S.P., Lee S.L., Saber H., Fourie J., Tornoe C., Booth B., et al. FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology. 2010;78:282–288. doi: 10.1159/000315736. [PubMed] [CrossRef] []

64. Yannaki E., Papayannopoulou T., Jonlin E., Zervou F., Karponi G., Xagorari A., Becker P., Psatha N., Batsis I., Kaloyannidis P., et al. Hematopoietic stem cell mobilization for gene therapy of adult patients with severe beta-thalassemia: Results of clinical trials using G-CSF or plerixafor in splenectomized and nonsplenectomized subjects. Mol. Ther. 2012;20:230–238. doi: 10.1038/mt.2011.195. [PMC free article] [PubMed] [CrossRef] []

65. Karponi G., Psatha N., Lederer C.W., Adair J., Zervou F., Zogas N., Kleanthous M., Tsatalas C., Anagnostopoulos A., Sadelain M., et al. Plerixafor+G-CSF–mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy. Blood. 2015;126:616–619. doi: 10.1182/blood-2015-03-629618. [PMC free article] [PubMed] [CrossRef] []

66. Tisdale J.F., Pierciey J.F.J., Kamble R., Kanter J., Krishnamurti L., Kwiatkowski J.L., Thompson M.A.A., Shestopalov I., Bonner M., Joseney-Antoine M., et al. Successful Plerixafor-Mediated Mobilization, Apheresis, and Lentiviral Vector Transduction of Hematopoietic Stem Cells in Patients with Severe Sickle Cell Disease. Blood. 2017;130:990. doi: 10.1182/blood.V130.Suppl_1.990.990. [CrossRef] []

67. Hsu Y.-M.S., Cushing M.M. Autologous Stem Cell Mobilization and Collection. Hematol. Clin. N. Am. 2016;30:573–589. doi: 10.1016/j.hoc.2016.01.004. [PubMed] [CrossRef] []

68. Yamanaka S. The Winding Road to Pluripotency (Nobel Lecture) Angew. Chem. Int. Ed. 2013;52:13900–13909. doi: 10.1002/anie.201306721. [PubMed] [CrossRef] []

69. Demirci S., Leonard A., Tisdale J.F. Hematopoietic stem cells from pluripotent stem cells: Clinical potential, challenges, and future perspectives. Stem Cells Transl. Med. 2020;9:1549–1557. doi: 10.1002/sctm.20-0247. [PMC free article] [PubMed] [CrossRef] []

70. Michallet M., Philip T., Philip I., Godinot H., Sebban C., Salles G., Thiebaut A., Biron P., Lopez F., Mazars P., et al. Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myelomaImpact of HSC dose on engraftment, safety, and immune reconstitution. Exp. Hematol. 2000;28:858–870. doi: 10.1016/S0301-472X(00)00169-7. [PubMed] [CrossRef] []

71. Negrin R.S., Atkinson K., Leemhuis T., Hanania E., Juttner C., Tierney K., Hu W.W., Johnston L.J., Shizuru J.A., Stockerl-Goldstein K.E., et al. Transplantation of Highly Purified CD34+Thy-l+ Hematopoietic Stem Cells in Patients with Metastatic Breast Cancer. Biol. Blood Marrow Transplant. 2000;6:262–271. doi: 10.1016/S1083-8791(00)70008-5. [PubMed] [CrossRef] []

72. Notta F., Doulatov S., Laurenti E., Poeppl A., Jurisica I., Dick J. Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment. Science. 2011;333:218–221. doi: 10.1126/science.1201219. [PubMed] [CrossRef] []

73. Biasco L., Pellin D., Scala S., Dionisio F., Basso-Ricci L., Leonardelli L., Scaramuzza S., Baricordi C., Ferrua F., Cicalese M.P., et al. In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell Stem Cell. 2016;19:107–119. doi: 10.1016/j.stem.2016.04.016. [PMC free article] [PubMed] [CrossRef] []

74. Baldwin K., Urbinati F., Romero Z., Campo-Fernandez B., Kaufman M.L., Cooper A.R., Masiuk K., Hollis R.P., Kohn D.B. Enrichment of Human Hematopoietic Stem/Progenitor Cells Facilitates Transduction for Stem Cell Gene Therapy. Stem Cells. 2015;33:1532–1542. doi: 10.1002/stem.1957. [PMC free article] [PubMed] [CrossRef] []

75. Masiuk K.E., Brown D., Laborada J., Hollis R.P., Urbinati F., Kohn D.B. Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells. Mol. Ther. 2017;25:2163–2175. doi: 10.1016/j.ymthe.2017.05.023. [PMC free article] [PubMed] [CrossRef] []

76. Akker E.V.D., Satchwell T.J., Pellegrin S., Daniels G., Toye A.M. The majority of the in vitro erythroid expansion potential resides in CD34- cells, outweighing the contribution of CD34+ cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica. 2010;95:1594–1598. doi: 10.3324/haematol.2009.019828. [PMC free article] [PubMed] [CrossRef] []

77. Zonari E., Desantis G., Petrillo C., Boccalatte F., Lidonnici M.R., Kajaste-Rudnitski A., Aiuti A., Ferrari G., Naldini L., Gentner B. Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Rep. 2017;8:977–990. doi: 10.1016/j.stemcr.2017.02.010. [PMC free article] [PubMed] [CrossRef] []

78. Radtke S., Pande D., Cui M., Perez A.M., Chan Y.-Y., Enstrom M., Schmuck S., Berger A., Eunson T., Adair J.E., et al. Purification of Human CD34+CD90+ HSCs Reduces Target Cell Population and Improves Lentiviral Transduction for Gene Therapy. Mol. Ther.-Methods Clin. Dev. 2020;18:679–691. doi: 10.1016/j.omtm.2020.07.010. [PMC free article] [PubMed] [CrossRef] []

79. Pietras E.M., Warr M.R., Passegué E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 2011;195:709–720. doi: 10.1083/jcb.201102131. [PMC free article] [PubMed] [CrossRef] []

80. Mazurier F., Gan O.I., McKenzie J.L., Doedens M., Dick J.E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood. 2004;103:545–552. doi: 10.1182/blood-2003-05-1558. [PubMed] [CrossRef] []

81. De Witt M.A., Magis W., Bray N.L., Wang T., Berman J.R., Urbinati F., Heo S.-J., Mitros T., Muñoz D.P., Boffelli D., et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 2016;8:360ra134. doi: 10.1126/scitranslmed.aaf9336. [PMC free article] [PubMed] [CrossRef] []

82. Hoban M.D., Cost G.J., Mendel M.C., Romero Z., Kaufman M.L., Joglekar A.V., Ho M., Lumaquin D., Gray D., Lill G.R., et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125:2597–2604. doi: 10.1182/blood-2014-12-615948. [PMC free article] [PubMed] [CrossRef] []

83. Ferrari G., Thrasher A.J., Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 2021;22:216–234. doi: 10.1038/s41576-020-00298-5. [PubMed] [CrossRef] []

84. Klaver-Flores S., Zittersteijn H.A., Canté-Barrett K., Lankester A., Hoeben R.C., Gonçalves M.A.F.V., Pike-Overzet K., Staal F.J.T. Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope? Front. Genome Ed. 2021;2:1–9. doi: 10.3389/fgeed.2020.615619. [CrossRef] []

85. De Ravin S.S., Brault J., Meis R.J., Liu S., Li L., Pavel-Dinu M., Lazzarotto C.R., Liu T.Q., Koontz S.M., Choi U., et al. Enhanced homology-directed repair for highly efficient gene editing in hematopoietic stem/progenitor cells. Blood. 2021;137:2598–2608. doi: 10.1182/blood.2020008503. [PMC free article] [PubMed] [CrossRef] []

86. Maruyama T., Dougan S.K., Truttmann M.C., Bilate A.M., Ingram J.R., Ploegh H.L. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 2015;33:538–542. doi: 10.1038/nbt.3190. [PMC free article] [PubMed] [CrossRef] []

87. Lomova A., Clark D.N., Campo-Fernandez B., Flores-Bjurström C., Kaufman M.L., Fitz-Gibbon S., Wang X., Miyahira E.Y., Brown D., DeWitt M.A., et al. Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair. Stem Cells. 2019;37:284–294. doi: 10.1002/stem.2935. [PMC free article] [PubMed] [CrossRef] []

88. Gutschner T., Haemmerle M., Genovese G., Draetta G.F., Chin L. Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Rep. 2016;14:1555–1566. doi: 10.1016/j.celrep.2016.01.019. [PubMed] [CrossRef] []

89. Tran N.-T., Bashir S., Li X., Rossius J., Chu V.T., Rajewsky K., Kühn R. Enhancement of Precise Gene Editing by the Association of Cas9 with Homologous Recombination Factors. Front. Genet. 2019;10:326. doi: 10.3389/fgene.2019.00365. [PMC free article] [PubMed] [CrossRef] []

90. Ngom M., Imren S., Maetzig T., Adair J., Knapp D.J., Chagraoui J., Fares I., Bordeleau M.-E., Sauvageau G., Leboulch P., et al. UM171 Enhances Lentiviral Gene Transfer and Recovery of Primitive Human Hematopoietic Cells. Mol. Ther.-Methods Clin. Dev. 2018;10:156–164. doi: 10.1016/j.omtm.2018.06.009. [PMC free article] [PubMed] [CrossRef] []

91. Psatha N., Georgolopoulos G., Phelps S., Papayannopoulou T. Brief Report: A Differential Transcriptomic Profile of Ex Vivo Expanded Adult Human Hematopoietic Stem Cells Empowers Them for Engraftment Better than Their Surface Phenotype. Stem Cells Transl. Med. 2017;6:1852–1858. doi: 10.1002/sctm.17-0048. [PMC free article] [PubMed] [CrossRef] []

92. Boitano A.E., Wang J., Romeo R., Bouchez L.C., Parker A.E., Sutton S.E., Walker J.R., Flaveny C.A., Perdew G.H., Denison M.S., et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329:1345–1348. doi: 10.1126/science.1191536. [PMC free article] [PubMed] [CrossRef] []

93. Bloh K., Rivera-Torres N. A Consensus Model of Homology-Directed Repair Initiated by CRISPR/Cas Activity. Int. J. Mol. Sci. 2021;22:3834. doi: 10.3390/ijms22083834. [PMC free article] [PubMed] [CrossRef] []

94. Gallagher D.N., Pham N., Tsai A.M., Janto A.N., Choi J., Ira G., Haber J.E. A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genet. 2020;16:e1008689. doi: 10.1371/journal.pgen.1008689. [PMC free article] [PubMed] [CrossRef] []

95. Jeong Y.-S., Kim E.J., Shim C.-K., Hou J.H., Kim J.M., Choi H.-G., Kim W.-K., Oh Y.-K. Modulation of biodistribution and expression of plasmid DNA following mesenchymal progenitor cell-based delivery. J. Drug Target. 2008;16:405–414. doi: 10.1080/10611860802088713. [PubMed] [CrossRef] []

96. Wang Z., Troilo P.J., Wang X., Griffiths T.G., Pacchione S.J., Barnum A.B., Harper L.B., Pauley C.J., Niu Z., Denisova L., et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11:711–721. doi: 10.1038/sj.gt.3302213. [PubMed] [CrossRef] []

97. De Ravin S.S., Reik A., Liu P.-Q., Li L., Wu X., Su L., Raley C., Theobald N., Choi U., Song A.H., et al. Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat. Biotechnol. 2016;34:424–429. doi: 10.1038/nbt.3513. [PMC free article] [PubMed] [CrossRef] []

98. Schiroli G., Ferrari S., Conway A., Jacob A., Capo V., Albano L., Plati T., Castiello M.C., Sanvito F., Gennery A.R., et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. 2017;9:eaan0820. doi: 10.1126/scitranslmed.aan0820. [PubMed] [CrossRef] []

99. Kuo C.Y., Long J.D., Campo-Fernandez B., de Oliveira S., Cooper A.R., Romero Z., Hoban M.D., Joglekar A.V., Lill G.R., Kaufman M.L., et al. Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome. Cell Rep. 2018;23:2606–2616. doi: 10.1016/j.celrep.2018.04.103. [PMC free article] [PubMed] [CrossRef] []

100. Tu Z., Yang W., Yan S., Yin A., Gao J., Liu X., Zheng Y., Zheng J., Li Z., Yang S., et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci. Rep. 2017;7:srep42081. doi: 10.1038/srep42081. [PMC free article] [PubMed] [CrossRef] []

101. Gangopadhyay S.A., Cox K.J., Manna D., Lim D., Maji B., Zhou Q., Choudhary A. Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry. 2019;58:234–244. doi: 10.1021/acs.biochem.8b01202. [PMC free article] [PubMed] [CrossRef] []

102. Wu Y., Yang L., Chang T., Kandeel F., Yee J.-K. A Small Molecule-Controlled Cas9 Repressible System. Mol. Ther.-Nucleic Acids. 2020;19:922–932. doi: 10.1016/j.omtn.2019.12.026. [PMC free article] [PubMed] [CrossRef] []

103. Kwon H., Kim M., Seo Y., Moon Y.S., Lee H.J., Lee K., Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biochemistry. 2018;156:172–193. doi: 10.1016/j.biomaterials.2017.11.034. [PubMed] [CrossRef] []

104. Sahin U., Karikó K., Türeci Ö. MRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 2014;13:759–780. doi: 10.1038/nrd4278. [PubMed] [CrossRef] []

105. Wesselhoeft R.A., Kowalski P., Anderson D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-018-05096-6. [PMC free article] [PubMed] [CrossRef] []

106. Dever D.P., Bak R., Reinisch A., Camarena J., Washington G., Nicolas C.E., Pavel-Dinu M., Saxena N., Wilkens A.B., Mantri S., et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nat. Cell Biol. 2016;539:384–389. doi: 10.1038/nature20134. [PMC free article] [PubMed] [CrossRef] []

107. Liang X., Potter J., Kumar S., Zou Y., Quintanilla R., Sridharan M., Carte J., Chen W., Roark N., Ranganathan S., et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 2015;208:44–53. doi: 10.1016/j.jbiotec.2015.04.024. [PubMed] [CrossRef] []

108. Kim S., Kim D., Cho S.W., Kim J., Kim J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–1019. doi: 10.1101/gr.171322.113. [PMC free article] [PubMed] [CrossRef] []

109. Simhadri V.L., McGill J., McMahon S., Wang J., Jiang H., Sauna Z.E. Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Mol. Ther.-Methods Clin. Dev. 2018;10:105–112. doi: 10.1016/j.omtm.2018.06.006. [PMC free article] [PubMed] [CrossRef] []

110. Shahbazi R., Sghia-Hughes G., Reid J.L., Kubek S., Haworth K.G., Humbert O., Kiem H.-P., Adair J.E. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat. Mater. 2019;18:1124–1132. doi: 10.1038/s41563-019-0385-5. [PMC free article] [PubMed] [CrossRef] []

111. Gutierrez-Guerrero A., Cosset F.-L., Verhoeyen E. Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses. 2020;12:1016. doi: 10.3390/v12091016. [PMC free article] [PubMed] [CrossRef] []

112. Bak R.O., Porteus M.H. CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors. Cell Rep. 2017;20:750–756. doi: 10.1016/j.celrep.2017.06.064. [PMC free article] [PubMed] [CrossRef] []

113. Bak R.O., Dever D.P., Porteus M.H. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat. Protoc. 2018;13:358–376. doi: 10.1038/nprot.2017.143. [PMC free article] [PubMed] [CrossRef] []

114. Cousin C., Oberkampf M., Felix T., Rosenbaum P., Weil R., Fabrega S., Morante V., Negri D., Cara A., Dadaglio G., et al. Persistence of Integrase-Deficient Lentiviral Vectors Correlates with the Induction of STING-Independent CD8+ T Cell Responses. Cell Rep. 2019;26:1242–1257.e7. doi: 10.1016/j.celrep.2019.01.025. [PMC free article] [PubMed] [CrossRef] []

115. Berns K.I., Muzyczka N. AAV: An Overview of Unanswered Questions. Hum. Gene Ther. 2017;28:308–313. doi: 10.1089/hum.2017.048. [PMC free article] [PubMed] [CrossRef] []

116. Frock R.L., Hu J., Meyers R., Ho Y.-J., Kii E., Alt F.W. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 2015;33:179–186. doi: 10.1038/nbt.3101. [PMC free article] [PubMed] [CrossRef] []

117. Mussolino C., Alzubi J., Fine E.J., Morbitzer R., Cradick T., Lahaye T., Bao G., Cathomen T. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014;42:6762–6773. doi: 10.1093/nar/gku305. [PMC free article] [PubMed] [CrossRef] []

118. Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.-S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–141. doi: 10.1101/gr.162339.113. [PMC free article] [PubMed] [CrossRef] []

119. Gabriel R., Lombardo A.L., Arens A., Miller J.C., Genovese P., Kaeppel C., Nowrouzi A., Bartholomae C.C., Wang J., Friedman G., et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 2011;29:816–823. doi: 10.1038/nbt.1948. [PubMed] [CrossRef] []

120. Kim D., Luk K., Wolfe S.A., Kim J.-S. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annu. Rev. Biochem. 2019;88:191–220. doi: 10.1146/annurev-biochem-013118-111730. [PubMed] [CrossRef] []

121. Cheng Y., Tsai S.Q. Illuminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biol. 2018;19:1–7. doi: 10.1186/s13059-018-1610-2. [PMC free article] [PubMed] [CrossRef] []

122. Turchiano G., Andrieux G., Klermund J., Blattner G., Pennucci V., El Gaz M., Monaco G., Poddar S., Mussolino C., Cornu T.I., et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell. 2021;28:1136–1147. doi: 10.1016/j.stem.2021.02.002. [PubMed] [CrossRef] []

123. Han H.A., Pang J.K.S., Soh B.-S. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J. Mol. Med. 2020;98:615–632. doi: 10.1007/s00109-020-01893-z. [PMC free article] [PubMed] [CrossRef] []

124. Hu Z., Wang Y., Liu Q., Qiu Y., Zhong Z., Li K., Li W., Deng Z., Sun Y. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. mBio. 2021;12:1–11. doi: 10.1128/mBio.00342-21. [PMC free article] [PubMed] [CrossRef] []

125. Zou J., Mali P., Huang X., Dowey S.N., Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118:4599–4608. doi: 10.1182/blood-2011-02-335554. [PMC free article] [PubMed] [CrossRef] []

126. Sebastiano V., Maeder M.L., Angstman J.F., Haddad B., Khayter C., Yeo D.T., Goodwin M.J., Hawkins J.S., Ramirez C.L., Batista L., et al. In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. Stem Cells. 2011;29:1717–1726. doi: 10.1002/stem.718. [PMC free article] [PubMed] [CrossRef] []

127. Ma N., Liao B., Zhang H., Wang L., Shan Y., Xue Y., Huang K., Chen S., Zhou X., Chen Y., et al. Transcription Activator-like Effector Nuclease (TALEN)-mediated Gene Correction in Integration-free β-Thalassemia Induced Pluripotent Stem Cells*. J. Biol. Chem. 2013;288:34671–34679. doi: 10.1074/jbc.M113.496174. [PMC free article] [PubMed] [CrossRef] []

128. Xie F., Ye L., Chang J.C., Beyer A.I., Wang J., Muench M.O., Kan Y.W. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–1533. doi: 10.1101/gr.173427.114. [PMC free article] [PubMed] [CrossRef] []

129. Song B., Fan Y., He W., Zhu D., Niu X., Wang D., Ou Z., Luo M., Sun X. Improved Hematopoietic Differentiation Efficiency of Gene-Corrected Beta-Thalassemia Induced Pluripotent Stem Cells by CRISPR/Cas9 System. Stem Cells Dev. 2015;24:1053–1065. doi: 10.1089/scd.2014.0347. [PubMed] [CrossRef] []

130. Xu P., Tong Y., Liu X.-Z., Wang T.-T., Cheng L., Wang B.-Y., Lv X., Huang Y., Liu D.-P. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs. Sci. Rep. 2015;5:srep12065. doi: 10.1038/srep12065. [PMC free article] [PubMed] [CrossRef] []

131. Huang X., Wang Y., Yan W., Smith C., Ye Z., Wang J., Gao Y., Mendelsohn L., Cheng L. Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation. Stem Cells. 2015;33:1470–1479. doi: 10.1002/stem.1969. [PMC free article] [PubMed] [CrossRef] []

132. Niu X., He W., Song B., Ou Z., Fan D., Chen Y., Fan Y., Sun X. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells. J. Biol. Chem. 2016;291:16576–16585. doi: 10.1074/jbc.M116.719237. [PMC free article] [PubMed] [CrossRef] []

133. Yang Y., Zhang X., Yi L., Hou Z., Chen J., Kou X., Zhao Y., Wang H., Sun X.-F., Jiang C., et al. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Stem Cells Transl. Med. 2016;5:8–19. doi: 10.5966/sctm.2015-0157. [PMC free article] [PubMed] [CrossRef] []

134. Hoban M.D., Lumaquin D., Kuo C.Y., Romero Z., Long J., Ho M., Young C.S., Mojadidi M., Fitz-Gibbon S., Cooper A.R., et al. CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells. Mol. Ther. 2016;24:1561–1569. doi: 10.1038/mt.2016.148. [PMC free article] [PubMed] [CrossRef] []

135. Ou Z., Niu X., He W., Chen Y., Song B., Xian Y., Fan D., Tang D., Sun X. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice. Sci. Rep. 2016;6:srep32463. doi: 10.1038/srep32463. [PMC free article] [PubMed] [CrossRef] []

136. Tang L., Zeng Y., Du H., Gong M., Peng J., Zhang B., Lei M., Zhao F., Wang W., Li X., et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol. Genet. Genom. 2017;292:525–533. doi: 10.1007/s00438-017-1299-z. [PubMed] [CrossRef] []

137. Wen J., Tao W., Hao S., Zu Y. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. J. Hematol. Oncol. 2017;10:1–11. doi: 10.1186/s13045-017-0489-9. [PMC free article] [PubMed] [CrossRef] []

138. Liu Y., Yang Y., Kang X., Lin B., Yu Q., Song B., Gao G., Chen Y., Sun X., Li X., et al. One-Step Biallelic and Scarless Correction of a β-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection. Mol. Ther.-Nucleic Acids. 2017;6:57–67. doi: 10.1016/j.omtn.2016.11.010. [PMC free article] [PubMed] [CrossRef] []

139. Cai L., Bai H., Mahairaki V., Gao Y., He C., Wen Y., Jin Y.-C., Wang Y., Pan R.L., Qasba A., et al. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Stem Cells Transl. Med. 2017;7:87–97. doi: 10.1002/sctm.17-0066. [PMC free article] [PubMed] [CrossRef] []

140. Liang P., Ding C., Sun H., Xie X., Xu Y., Zhang X., Sun Y., Xiong Y., Ma W., Liu Y., et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell. 2017;8:811–822. doi: 10.1007/s13238-017-0475-6. [PMC free article] [PubMed] [CrossRef] []

141. Antony J.S., Latifi N., Haque A.K.M.A., Lamsfus-Calle A., Daniel-Moreno A., Graeter S., Baskaran P., Weinmann P., Mezger M., Handgretinger R., et al. Gene correction of HBB mutations in CD34+ hematopoietic stem cells using Cas9 mRNA and ssODN donors. Mol. Cell. Pediatr. 2018;5:1–7. doi: 10.1186/s40348-018-0086-1. [PMC free article] [PubMed] [CrossRef] []

142. Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M., McNeill M.S., Yan S., Camarena J., et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 2018;24:1216–1224. doi: 10.1038/s41591-018-0137-0. [PMC free article] [PubMed] [CrossRef] []

143. Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N., Shalem O., Chen D.D., Schupp P.G., Vinjamur D., Garcia S., et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nat. Cell Biol. 2015;527:192–197. doi: 10.1038/nature15521. [PMC free article] [PubMed] [CrossRef] []

144. Traxler E.A., Yao Y., Wang Y.-D., Woodard K.J., Kurita R., Nakamura Y., Hughes J.R., Hardison R.C., Blobel G.A., Li C., et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med. 2016;22:987–990. doi: 10.1038/nm.4170. [PMC free article] [PubMed] [CrossRef] []

145. Ye L., Wang J., Tan Y., Beyer A.I., Xie F., Muench M.O., Kan Y.W. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. USA. 2016;113:10661–10665. doi: 10.1073/pnas.1612075113. [PMC free article] [PubMed] [CrossRef] []

146. Bjurström C.F., Mojadidi M., Phillips J., Kuo C., Lai S., Lill G.R., Cooper A., Kaufman M., Urbinati F., Wang X., et al. Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases. Mol. Ther.-Nucleic Acids. 2016;5:e351. doi: 10.1038/mtna.2016.52. [PMC free article] [PubMed] [CrossRef] []

147. Chang K.-H., Smith S.E., Sullivan T., Chen K., Zhou Q., West J.A., Liu M., Liu Y., Vieira B.F., Sun C., et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells. Mol. Ther.-Methods Clin. Dev. 2017;4:137–148. doi: 10.1016/j.omtm.2016.12.009. [PMC free article] [PubMed] [CrossRef] []

148. Mettananda S., Fisher C.A., Hay D., Badat M., Quek L., Clark K., Hublitz P., Downes D., Kerry J., Gosden M., et al. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nat. Commun. 2017;8:1–11. doi: 10.1038/s41467-017-00479-7. [PMC free article] [PubMed] [CrossRef] []

149. Antoniani C., Meneghini V., Lattanzi A., Felix T., Romano O., Magrin E., Weber L., Pavani G., El Hoss S., Kurita R., et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood. 2018;131:1960–1973. doi: 10.1182/blood-2017-10-811505. [PubMed] [CrossRef] []

150. Li C., Psatha N., Sova P., Gil S., Wang H., Kim J., Kulkarni C., Valensisi C., David Hawkins R., Stamatoyannopoulos G., et al. Reactivation of g-globin in adult b-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood. 2018;131:2915–2928. doi: 10.1182/blood-2018-03-838540. [PMC free article] [PubMed] [CrossRef] []

151. Psatha N., Reik A., Phelps S., Zhou Y., Dalas D., Yannaki E., Levasseur D.N., Urnov F.D., Holmes M.C., Papayannopoulou T. Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major. Mol. Ther.-Methods Clin. Dev. 2018;10:313–326. doi: 10.1016/j.omtm.2018.08.003. [PMC free article] [PubMed] [CrossRef] []

152. Patsali P., Turchiano G., Papasavva P., Romito M., Loucari C.C., Stephanou C., Christou S., Sitarou M., Mussolino C., Cornu T.I., et al. Correction of IVS I-110(G>A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematology. 2019;104:e497–e501. doi: 10.3324/haematol.2018.215178. [PMC free article] [PubMed] [CrossRef] []

153. Wu Y., Zeng J., Roscoe B.P., Liu P., Yao Q., Lazzarotto C.R., Clement M.K., Cole M.A., Luk K., Baricordi C., et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 2019;25:776–783. doi: 10.1038/s41591-019-0401-y. [PMC free article] [PubMed] [CrossRef] []

154. Lux C.T., Pattabhi S., Berger M., Nourigat C., Flowers D.A., Negre O., Humbert O., Yang J.G., Lee C., Jacoby K., et al. TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction. Mol. Ther.-Methods Clin. Dev. 2019;12:175–183. doi: 10.1016/j.omtm.2018.12.008. [PMC free article] [PubMed] [CrossRef] []

155. Urnov F., Miller J.C., Lee Y.-L., Beausejour C.M., Rock J.M., Augustus S., Jamieson A.C., Porteus M.H., Gregory P.D., Holmes M.C. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nat. Cell Biol. 2005;435:646–651. doi: 10.1038/nature03556. [PubMed] [CrossRef] []

156. Lombardo A.L., Genovese P., Beausejour C.M., Colleoni S., Lee Y.-L., Kim K.A., Ando D., Urnov F.D., Galli C., Gregory P.D., et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 2007;25:1298–1306. doi: 10.1038/nbt1353. [PubMed] [CrossRef] []

157. Chang C.-W., Lai Y.-S., Westin E., Khodadadi-Jamayran A., Pawlik K.M., Lamb L.S., Goldman F.D., Townes T.M. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep. 2015;12:1668–1677. doi: 10.1016/j.celrep.2015.08.013. [PubMed] [CrossRef] []

158. Roth T.L., Puig-Saus C., Yu R., Shifrut E., Carnevale J., Li P.J., Hiatt J., Saco J., Krystofinski P., Li H., et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559:405–409. doi: 10.1038/s41586-018-0326-5. [PMC free article] [PubMed] [CrossRef] []

159. Pavel-Dinu M., Wiebking V., Dejene B.T., Srifa W., Mantri S., Nicolas C.E., Lee C., Bao G., Kildebeck E.J., Punjya N., et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-13620-5. [PMC free article] [PubMed] [CrossRef] []

160. Laskowski T.J., Van Caeneghem Y., Pourebrahim R., Ma C., Ni Z., Garate Z., Crane A.M., Li X.S., Liao W., Gonzalez-Garay M., et al. Gene Correction of iPSCs from a Wiskott-Aldrich Syndrome Patient Normalizes the Lymphoid Developmental and Functional Defects. Stem Cell Rep. 2016;7:139–148. doi: 10.1016/j.stemcr.2016.06.003. [PMC free article] [PubMed] [CrossRef] []

161. Rai R., Romito M., Rivers E., Turchiano G., Blattner G., Vetharoy W., Ladon D., Andrieux G., Zhang F., Zinicola M., et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich Syndrome. Nat. Commun. 2020;11:1–15. doi: 10.1038/s41467-020-17626-2. [PMC free article] [PubMed] [CrossRef] []

162. Pavani G., Laurent M., Fabiano A., Cantelli E., Sakkal A., Corre G., Lenting P.J., Concordet J.P., Toueille M., Miccio A., et al. Ex vivo editing of human hematopoietic stem cells for erythroid expression of therapeutic proteins. Nat. Commun. 2020;11:1–13. [PMC free article] [PubMed] []

163. Dreyer A.-K., Hoffmann D., Lachmann N., Ackermann M., Steinemann D., Timm B., Siler U., Reichenbach J., Grez M., Moritz T., et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials. 2015;69:191–200. doi: 10.1016/j.biomaterials.2015.07.057. [PubMed] [CrossRef] []

164. Flynn R., Grundmann A., Renz P., Hänseler W., James W., Cowley S.A., Moore M.D. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp. Hematol. 2015;43:838–848.e3. doi: 10.1016/j.exphem.2015.06.002. [PMC free article] [PubMed] [CrossRef] []

165. Merling R.K., Sweeney C.L., Chu J., Bodansky A., Choi U., Priel D.L., Kuhns D.B., Wang H., Vasilevsky S., De Ravin S.S., et al. An AAVS1-Targeted Minigene Platform for Correction of iPSCs From All Five Types of Chronic Granulomatous Disease. Mol. Ther. 2015;23:147–157. doi: 10.1038/mt.2014.195. [PMC free article] [PubMed] [CrossRef] []

166. Sweeney C.L., Zou J., Choi U., Merling R.K., Liu A., Bodansky A., Burkett S., Kim J.-W., De Ravin S.S., Malech H.L. Targeted Repair of CYBB in X-CGD iPSCs Requires Retention of Intronic Sequences for Expression and Functional Correction. Mol. Ther. 2017;25:321–330. doi: 10.1016/j.ymthe.2016.11.012. [PMC free article] [PubMed] [CrossRef] []

167. De Ravin S.S., Li L., Wu X., Choi U., Allen C., Koontz S., Lee J., Theobald-Whiting N., Chu J., Garofalo M., et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci. Transl. Med. 2017;9:eaah3480. doi: 10.1126/scitranslmed.aah3480. [PubMed] [CrossRef] []

168. Merling R.K., Kuhns U.B., Sweeney C.L., Wu X., Burkett S., Chu J., Lee J., Koontz S., Di Pasquale G., Afione S.A., et al. Gene-edited pseudogene resurrection corrects p47phox-deficient chronic granulomatous disease. Blood Adv. 2017;1:270–278. doi: 10.1182/bloodadvances.2016001214. [PMC free article] [PubMed] [CrossRef] []

169. Klatt D., Cheng E., Hoffmann D., Santilli G., Thrasher A.J., Brendel C., Schambach A. Differential Transgene Silencing of Myeloid-Specific Promoters in the AAVS1 Safe Harbor Locus of Induced Pluripotent Stem Cell-Derived Myeloid Cells. Hum. Gene Ther. 2020;31:199–210. doi: 10.1089/hum.2019.194. [PMC free article] [PubMed] [CrossRef] []

170. Goodwin M., Lee E., Lakshmanan U., Shipp S., Froessl L., Barzaghi F., Passerini L., Narula M., Sheikali A., Lee C., et al. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. Sci. Adv. 2020;6:eaaz0571. doi: 10.1126/sciadv.aaz0571. [PMC free article] [PubMed] [CrossRef] []

171. Hubbard N., Hagin D., Sommer K., Song Y., Khan I., Clough C., Ochs H.D., Rawlings D.J., Scharenberg A.M., Torgerson T.R. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood. 2016;127:2513–2522. doi: 10.1182/blood-2015-11-683235. [PubMed] [CrossRef] []

172. Rio P., Baños R., Lombardo A.L., Quintana-Bustamante O., Alvarez L., Garate Z., Genovese P., Almarza E., Valeri A., Díez B., et al. Targeted gene therapy and cell reprogramming in F anconi anemia. EMBO Mol. Med. 2014;6:835–848. doi: 10.15252/emmm.201303374. [PMC free article] [PubMed] [CrossRef] []

173. Kramarzova K.S., Osborn M.J., Webber B.R., DeFeo A.P., McElroy A.N., Kim C.J., Tolar J. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int. J. Mol. Sci. 2017;18:1269. doi: 10.3390/ijms18061269. [PMC free article] [PubMed] [CrossRef] []

174. Diez B., Genovese P., Roman-Rodriguez F.J., Alvarez L., Schiroli G., Ugalde L., Rodriguez-Perales S., Sevilla J., De Heredia C.D., Holmes M.C., et al. Therapeutic gene editing in CD 34 + hematopoietic progenitors from Fanconi anemia patients. EMBO Mol. Med. 2017;9:1574–1588. doi: 10.15252/emmm.201707540. [PMC free article] [PubMed] [CrossRef] []

175. Román-Rodríguez F.J., Ugalde L., Álvarez L., Díez B., Ramírez M.J., Risueño C., Cortón M., Bogliolo M., Bernal S., March F., et al. NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia. Cell Stem Cell. 2019;25:607–621.e7. doi: 10.1016/j.stem.2019.08.016. [PubMed] [CrossRef] []

176. Park C.-Y., Kim J., Kweon J., Son J.S., Lee J.S., Yoo J.-E., Cho S.-R., Kim D.-W. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA. 2014;111:9253–9258. doi: 10.1073/pnas.1323941111. [PMC free article] [PubMed] [CrossRef] []

177. Park C.Y., Kim D.H., Son J.S., Sung J.J., Lee J., Bae S., Kim J.H., Kim D.W., Kim J.S. Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9. Cell Stem Cell. 2015;17:213–220. doi: 10.1016/j.stem.2015.07.001. [PubMed] [CrossRef] []

178. Wu Y., Hu Z., Li Z., Pang J., Feng M., Hu X., Wang X., Lin-Peng S., Liu B., Chen F., et al. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci. Rep. 2016;6:srep18865. doi: 10.1038/srep18865. [PMC free article] [PubMed] [CrossRef] []

179. Park C.-Y., Sung J.J., Cho S.-R., Kim J., Kim D.-W. Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9. Stem Cell Rep. 2019;12:1242–1249. doi: 10.1016/j.stemcr.2019.04.016. [PMC free article] [PubMed] [CrossRef] []

180. Huai C., Jia C., Sun R., Xu P., Min T., Wang Q., Zheng C., Chen H., Lu D. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Qual. Life Res. 2017;136:875–883. doi: 10.1007/s00439-017-1801-z. [PubMed] [CrossRef] []

181. Cleyrat C., Girard R., Choi E.H., Jeziorski E., Lavabre-Bertrand T., Hermouet S., Carillo S., Wilson B.S. Gene editing rescue of a novel MPL mutant associated with congenital amegakaryocytic thrombocytopenia. Blood Adv. 2017;1:1815–1826. doi: 10.1182/bloodadvances.2016002915. [PMC free article] [PubMed] [CrossRef] []

182. Schwarze L.I., Sonntag T., Wild S., Schmitz S., Uhde A., Fehse B. Automated production of CCR5-negative CD4+-T cells in a GMP-compatible, clinical scale for treatment of HIV-positive patients. Gene Ther. 2021:1–16. doi: 10.1038/s41434-021-00259-5. [PubMed] [CrossRef] []

183. Xu L., Yang H., Gao Y., Chen Z., Xie L., Liu Y., Liu Y., Wang X., Li H., Lai W., et al. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol. Ther. 2017;25:1782–1789. doi: 10.1016/j.ymthe.2017.04.027. [PMC free article] [PubMed] [CrossRef] []

184. Mlambo T., Nitsch S., Hildenbeutel M., Romito M., Müller M., Bossen C., Diederichs S., Cornu T.I., Cathomen T., Mussolino C. Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 2018;46:4456–4468. doi: 10.1093/nar/gky171. [PMC free article] [PubMed] [CrossRef] []

185. Chandrakasan S., Malik P. Gene therapy for hemoglobinopathies: The state of the field and the future. Hematol. Oncol. Clin. N. Am. 2014;28:199–216. doi: 10.1016/j.hoc.2013.12.003. [PMC free article] [PubMed] [CrossRef] []

186. Kountouris P., Lederer C.W., Fanis P., Feleki X., Old J., Kleanthous M. IthaGenes: An Interactive Database for Haemoglobin Variations and Epidemiology. PLoS ONE. 2014;9:e103020. doi: 10.1371/journal.pone.0103020. [PMC free article] [PubMed] [CrossRef] []

187. Esrick E.B., Lehmann L.E., Biffi A., Achebe M., Brendel C., Ciuculescu M.F., Daley H., MacKinnon B., Morris E., Federico A., et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N. Engl. J. Med. 2021;384:205–215. doi: 10.1056/NEJMoa2029392. [PMC free article] [PubMed] [CrossRef] []

188. Bluebird to Withdraw Gene Therapy from Germany after Dispute over Price. 20 April 2021. [(accessed on 18 May 2021)]; Available online: https://www.biopharmadive.com/news/bluebird-withdraw-zynteglo-germany-price/598689/

189. Patsali P., Mussolino C., Ladas P., Floga A., Kolnagou A., Christou S., Sitarou M., Antoniou M.N., Cathomen T., Lederer C.W., et al. The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. J. Clin. Med. 2019;8:1959. doi: 10.3390/jcm8111959. [PMC free article] [PubMed] [CrossRef] []

190. Xu S., Luk K., Yao Q., Shen A.H., Zeng J., Wu Y., Luo H.Y., Brendel C., Pinello L., Chui D.H.K., et al. Editing aberrant splice sites efficiently restores b-globin expression in b-thalassemia. Blood. 2019;133:2255–2262. doi: 10.1182/blood-2019-01-895094. [PMC free article] [PubMed] [CrossRef] []

191. Zeng J., Wu Y., Ren C., Bonanno J., Shen A.H., Shea D., Gehrke J.M., Clement K., Luk K., Yao Q., et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 2020;26:535–541. doi: 10.1038/s41591-020-0790-y. [PMC free article] [PubMed] [CrossRef] []

192. Gehrke J.M., Cervantes O., Clement M.K., Wu Y., Zeng J., Bauer D.E., Pinello L., Joung J.K. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 2018;36:977–982. doi: 10.1038/nbt.4199. [PMC free article] [PubMed] [CrossRef] []

193. Bauer D.E., Kamran S.C., Orkin S.H. Reawakening fetal hemoglobin: Prospects for new therapies for the β-globin disorders. Blood. 2012;120:2945–2953. doi: 10.1182/blood-2012-06-292078. [PMC free article] [PubMed] [CrossRef] []

194. Shariati L., Khanahmad H., Salehi M., Hejazi Z., Rahimmanesh I., Tabatabaiefar M.A., Modarressi M.H. Genetic disruption of theKLF1gene to overexpress the γ-globin gene using the CRISPR/Cas9system. J. Gene Med. 2016;18:294–301. doi: 10.1002/jgm.2928. [PubMed] [CrossRef] []

195. Wilber A., Tschulena U., Hargrove P.W., Kim Y.-S., Persons D.A., Barbas C.F., Nienhuis A.W. A zinc-finger transcriptional activator designed to interact with the γ-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood. 2010;115:3033–3041. doi: 10.1182/blood-2009-08-240556. [PMC free article] [PubMed] [CrossRef] []

196. Mettananda S., Yasara N., Fisher C.A., Taylor S., Gibbons R., Higgs D. Synergistic silencing of α-globin and induction of γ-globin by histone deacetylase inhibitor, vorinostat as a potential therapy for β-thalassaemia. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-48204-2. [PMC free article] [PubMed] [CrossRef] []

197. Yen J.S., Newby G.A., Mayuranathan T., Porter S.N., Yao Y., Woodard B.K.J., Mayberry B.K., Everette K., Zhang M.J., Henderson M.J.M., et al. Base Editing Eliminates the Sickle Cell Mutation and Pathology in Hematopoietic Stem Cells Derived Erythroid Cells. Blood. 2020;136:13–14. doi: 10.1182/blood-2020-139016. [CrossRef] []

198. Notarangelo L.D. Primary immunodeficiencies. J. Allergy Clin. Immunol. 2010;125:S182–S194. doi: 10.1016/j.jaci.2009.07.053. [PubMed] [CrossRef] []

199. Pike-Overzet K., Van Der Burg M., Wagemaker G., Van Dongen J.J., Staal F.J. New Insights and Unresolved Issues Regarding Insertional Mutagenesis in X-linked SCID Gene Therapy. Mol. Ther. 2007;15:1910–1916. doi: 10.1038/sj.mt.6300297. [PubMed] [CrossRef] []

200. Charrier S., Peyrou C.L., Poletti V., Rothe M., Cédrone G., Gjata B., Mavilio F., Fischer A., Schambach A., De Villartay J.-P., et al. Biosafety Studies of a Clinically Applicable Lentiviral Vector for the Gene Therapy of Artemis-SCID. Mol. Ther.-Methods Clin. Dev. 2019;15:232–245. doi: 10.1016/j.omtm.2019.08.014. [PMC free article] [PubMed] [CrossRef] []

201. Garcia-Perez L., van Eggermond M., van Roon L., Vloemans S.A., Cordes M., Schambach A., Rothe M., Berghuis D., Lagresle-Peyrou C., Cavazzana M., et al. Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID. Mol. Ther.-Methods Clin. Dev. 2020;17:666–682. doi: 10.1016/j.omtm.2020.03.016. [PMC free article] [PubMed] [CrossRef] []

202. Fox T.A., Booth C. Gene therapy for primary immunodeficiencies. Br. J. Haematol. 2020 doi: 10.1111/bjh.17269. [PubMed] [CrossRef] []

203. Allenspach E., Rawlings D.J., Scharenberg A.M. X-Linked Severe Combined Immunodeficiency. University of Washington; Seattle, WA, USA: 1993. []

204. Ferguson-Smith M.A. Brenner’s Encyclopedia of Genetics. 2nd ed. Elsevier Inc., imprint Academic Press; London, UK: 2013. Wiskott-Aldrich Syndrome; p. 346. []

205. Wrona D., Pastukhov O., Pritchard R.S., Raimondi F., Tchinda J., Jinek M., Siler U., Reichenbach J. CRISPR-Directed Therapeutic Correction at the NCF1 Locus Is Challenged by Frequent Incidence of Chromosomal Deletions. Mol. Ther.-Methods Clin. Dev. 2020;17:936–943. doi: 10.1016/j.omtm.2020.04.015. [PMC free article] [PubMed] [CrossRef] []

206. Tan Q.K.-G., Louie R.J., Sleasman J.W. IPEX Syndrome. [(accessed on 14 June 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK1118/

207. Bacchetta R., Barzaghi F., Roncarolo M.-G. From IPEX syndrome to FOXP3 mutation: A lesson on immune dysregulation. Ann. N. Y. Acad. Sci. 2018;1417:5–22. doi: 10.1111/nyas.13011. [PubMed] [CrossRef] []

208. Passerini L., Mel E.R., Sartirana C., Fousteri G., Bondanza A., Naldini L., Roncarolo M.G., Bacchetta R. CD4+ T Cells from IPEX Patients Convert into Functional and Stable Regulatory T Cells by FOXP3 Gene Transfer. Sci. Transl. Med. 2013;5:215ra174. doi: 10.1126/scitranslmed.3007320. [PubMed] [CrossRef] []

209. Sato Y., Passerini L., Piening B.D., Uyeda M.J., Goodwin M., Gregori S., Snyder M.P., Bertaina A., Roncarolo M., Bacchetta R. Human-engineered Treg-like cells suppress FOXP3-deficient T cells but preserve adaptive immune responses in vivo. Clin. Transl. Immunol. 2020;9:1214. doi: 10.1002/cti2.1214. [PMC free article] [PubMed] [CrossRef] []

210. Davies E.G., Thrasher A.J. Update on the hyper immunoglobulin M syndromes. Br. J. Haematol. 2010;149:167–180. doi: 10.1111/j.1365-2141.2010.08077.x. [PMC free article] [PubMed] [CrossRef] []

211. Kawabe T., Matsushima M., Hashimoto N., Imaizumi K., Hasegawa Y. CD40/CD40 Ligand Interactions in Immune Responses and Pulmonary Immunity. Nagoya J. Med. Sci. 2011;73:69–78. [PMC free article] [PubMed] []

212. Sacco M.G., Ungari M., Catò E.M., Villa A., Strina D., Notarangelo L.D., Jonkers J., Zecca L., Facchetti F., Vezzoni P. Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome. Cancer Gene Ther. 2000;7:1299–1306. doi: 10.1038/sj.cgt.7700232. [PubMed] [CrossRef] []

213. Drexler B., Tichelli A., Passweg J.R. Bone marrow failure. Ther. Umschau. 2019;76:523–529. doi: 10.1024/0040-5930/a001123. [PubMed] [CrossRef] []

214. Cypris O., Eipel M., Franzen J., Rösseler C., Tharmapalan V., Kuo C.-C., Vieri M., Nikolić M., Kirschner M., Brümmendorf T.H., et al. PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. Clin. Epigenetics. 2020;12:1–14. doi: 10.1186/s13148-020-00914-5. [PMC free article] [PubMed] [CrossRef] []

215. Río P., Navarro S., Bueren J.A. Advances in Gene Therapy for Fanconi Anemia. Hum. Gene Ther. 2018;29:1114–1123. doi: 10.1089/hum.2018.124. [PubMed] [CrossRef] []

216. Osborn M.J., Gabriel R., Webber B.R., DeFeo A.P., McElroy A.N., Jarjour J., Starker C., Wagner J.E., Joung J.K., Voytas D., et al. Fanconi Anemia Gene Editing by the CRISPR/Cas9 System. Hum. Gene Ther. 2015;26:114–126. doi: 10.1089/hum.2014.111. [PMC free article] [PubMed] [CrossRef] []

217. Richardson C.D., Kazane K.R., Feng S.J., Zelin E., Bray N.L., Schäfer A.J., Floor S.N., Corn J.E. CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat. Genet. 2018;50:1132–1139. doi: 10.1038/s41588-018-0174-0. [PubMed] [CrossRef] []

218. Wienert B., Nguyen D.N., Guenther A., Feng S.J., Locke M.N., Wyman S.K., Shin J., Kazane K.R., Gregory G.L., Carter M., et al. Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat. Commun. 2020;11:1–15. doi: 10.1038/s41467-020-15845-1. [PMC free article] [PubMed] [CrossRef] []

219. Dargaud Y., Meunier S., Negrier C. Haemophilia and thrombophilia: An unexpected association! Haemophilia. 2004;10:319–326. doi: 10.1111/j.1365-2516.2004.00906.x. [PubMed] [CrossRef] []

220. Senst B., Tadi P., Basit H., Arif J. Hypercoagulability. [(accessed on 14 June 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK538251/

221. Nance D. Brenner’s Encyclopedia of Genetics. 2nd ed. Elsevier Inc., imprint Academic Press; London, UK: 2013. Hemophilia; pp. 426–429. []

222. Li H., Haurigot V., Doyon Y., Li T., Wong S.Y., Bhagwat A.S., Malani N., Anguela X.M., Sharma R., Ivanciu L., et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nat. Cell Biol. 2011;475:217–221. doi: 10.1038/nature10177. [PMC free article] [PubMed] [CrossRef] []

223. Chen H., Shi M., Gilam A., Zheng Q., Zhang Y., Afrikanova I., Li J., Gluzman Z., Jiang R., Kong L.-J., et al. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Sci. Rep. 2019;9:16838-15. doi: 10.1038/s41598-019-53198-y. [PMC free article] [PubMed] [CrossRef] []

224. Ohmori T., Nagao Y., Mizukami H., Sakata A., Muramatsu S.-I., Ozawa K., Tominaga S.-I., Hanazono Y., Nishimura S., Nureki O., et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-017-04625-5. [PMC free article] [PubMed] [CrossRef] []

225. Sharma R., Anguela X.M., Doyon Y., Wechsler T., DeKelver R.C., Sproul S., Paschon D.E., Miller J.C., Davidson R.J., Shivak D.A., et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood. 2015;126:1777–1784. doi: 10.1182/blood-2014-12-615492. [PMC free article] [PubMed] [CrossRef] []

226. Reiss U.M., Zhang L., Ohmori T. Hemophilia gene therapy—New country initiatives. Haemophilia. 2021;27:132–141. doi: 10.1111/hae.14080. [PubMed] [CrossRef] []

227. Chang L.-J. Lentiviral FVIII Gene Therapy. [(accessed on 14 June 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03217032.

228. Chang L.-J. Lentiviral FIX Gene Therapy. [(accessed on 14 June 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03961243.

229. Parameswaran Hari M.C.W. Gene Therapy Trial for Platelet Derived Factor VIII Production in Hemophilia A. [(accessed on 14 June 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03818763.

230. Van Der Ploeg A.T., Kruijshaar M.E., Toscano A., Laforêt P., Angelini C., Lachmann R.H., Pascual S.I.P., Roberts M., Rösler K., Stulnig T., et al. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: A 10-year experience. Eur. J. Neurol. 2017;24:768-e31. doi: 10.1111/ene.13285. [PubMed] [CrossRef] []

231. Sirrs S., Hollak C.E.M., Merkel M., Sechi A., Glamuzina E., Janssen M.C., Lachmann R., Langendonk J.G., Scarpelli M., the SFEIM-A Study Group et al. JIMD Reports. Volume 27. Springer; Berlin/Heidelberg, Germany: 2015. The Frequencies of Different Inborn Errors of Metabolism in Adult Metabolic Centres: Report from the SSIEM Adult Metabolic Physicians Group; pp. 85–91. [PMC free article] [PubMed] []

232. Malatack J.J., Consolini D.M., Bayever E. The status of hematopoietic stem cell transplantation in lysosomal storage disease. Pediatr. Neurol. 2003;29:391–403. doi: 10.1016/j.pediatrneurol.2003.09.003. [PubMed] [CrossRef] []

233. Andreou T., Rippaus N., Wronski K., Williams J., Taggart D., Cherqui S., Sunderland A., Kartika Y.D., Egnuni T., Brownlie R.J., et al. Hematopoietic Stem Cell Gene Therapy for Brain Metastases Using Myeloid Cell–Specific Gene Promoters. J. Natl. Cancer Inst. 2019;112:617–627. doi: 10.1093/jnci/djz181. [PMC free article] [PubMed] [CrossRef] []

234. Rocca C.J., Goodman S.M., Dulin J.N., HaQuang J.H., Gertsman I., Blondelle J., Smith J.L.M., Heyser C.J., Cherqui S. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci. Transl. Med. 2017;9:eaaj2347. doi: 10.1126/scitranslmed.aaj2347. [PMC free article] [PubMed] [CrossRef] []

235. Rocca C.J., Rainaldi J.N., Sharma J., Shi Y., HaQuang J.H., Luebeck J., Mali P., Cherqui S. CRISPR-Cas9 Gene Editing of Hematopoietic Stem Cells from Patients with Friedreich’s Ataxia. Mol. Ther.-Methods Clin. Dev. 2020;17:1026–1036. doi: 10.1016/j.omtm.2020.04.018. [PMC free article] [PubMed] [CrossRef] []

236. Binnie A., Fernandes E., Almeida-Lousada H., De Mello R.A., Castelo-Branco P. CRISPR-based strategies in infectious disease diagnosis and therapy. Infection. 2021:1–9. doi: 10.1007/s15010-020-01554-w. [PMC free article] [PubMed] [CrossRef] []

237. Azangou-Khyavy M., Ghasemi M., Khanali J., Boroomand-Saboor M., Jamalkhah M., Soleimani M., Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front. Immunol. 2020;11:2062. doi: 10.3389/fimmu.2020.02062. [PMC free article] [PubMed] [CrossRef] []

238. Ghorbani A., Hadifar S., Salari R., Izadpanah K., Burmistrz M., Afsharifar A., Eskandari M.H., Niazi A., Denes C.E., Neely G.G. A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Res. 2021;30:221–238. doi: 10.1007/s11248-021-00247-w. [PMC free article] [PubMed] [CrossRef] []

239. Morgan M.A., Büning H., Sauer M., Schambach A. Use of Cell and Genome Modification Technologies to Generate Improved “Off-the-Shelf” CAR T and CAR NK Cells. Front. Immunol. 2020;11:1965. doi: 10.3389/fimmu.2020.01965. [PMC free article] [PubMed] [CrossRef] []

240. Saydaminova K., Ye X., Wang H., Richter M., Ho M., Chen H., Xu N., Kim J.-S., Papapetrou E., Holmes M.C., et al. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Mol. Ther. Methods Clin. Dev. 2015;1:14057. doi: 10.1038/mtm.2014.57. [PMC free article] [PubMed] [CrossRef] []

241. Smith A.J.P., Deloukas P., Munroe P.B. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits. Physiol. Genom. 2018;50:510–522. doi: 10.1152/physiolgenomics.00028.2018. [PMC free article] [PubMed] [CrossRef] []

242. Chan K., Tong A.H.Y., Brown K.R., Mero P., Moffat J. Pooled CRISPR-Based Genetic Screens in Mammalian Cells. J. Vis. Exp. 2019:e59780. doi: 10.3791/59780. [PubMed] [CrossRef] []

243. Gonçalves E., Segura-Cabrera A., Pacini C., Picco G., Behan F.M., Jaaks P., Coker E.A., Meer D., Barthorpe A., Lightfoot H., et al. Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens. Mol. Syst. Biol. 2020;16:e9405. doi: 10.15252/msb.20199405. [PMC free article] [PubMed] [CrossRef] []

244. Makhov P., Sohn J.A., Serebriiskii I.G., Fazliyeva R., Khazak V., Boumber Y., Uzzo R.G., Kolenko V.M. CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. Br. J. Cancer. 2020;123:1749–1756. doi: 10.1038/s41416-020-01087-x. [PMC free article] [PubMed] [CrossRef] []

245. Zhan T., Rindtorff N., Betge J., Ebert M.P., Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin. Cancer Biol. 2019;55:106–119. doi: 10.1016/j.semcancer.2018.04.001. [PubMed] [CrossRef] []

246. Aleshin A., Greenberg P.L. Molecular pathophysiology of the myelodysplastic syndromes: Insights for targeted therapy. Blood Adv. 2018;2:2787–2797. doi: 10.1182/bloodadvances.2018015834. [PMC free article] [PubMed] [CrossRef] []

247. Morgan R.A., Gray D., Lomova A., Kohn D.B. Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell. 2017;21:574–590. doi: 10.1016/j.stem.2017.10.010. [PMC free article] [PubMed] [CrossRef] []

248. Tajer P., Pike-Overzet K., Arias S., Havenga M., Staal F.J. Ex Vivo Expansion of Hematopoietic Stem Cells for Therapeutic Purposes: Lessons from Development and the Niche. Cells. 2019;8:169. doi: 10.3390/cells8020169. [PMC free article] [PubMed] [CrossRef] []

249. Al-Saif A.M. Gene therapy of hematological disorders: Current challenges. Gene Ther. 2019;26:296–307. doi: 10.1038/s41434-019-0093-4. [PubMed] [CrossRef] []

250. Park S.-J., Jeong T.Y., Shin S.K., Yoon D.E., Lim S.-Y., Kim S.P., Choi J., Lee H., Hong J.-I., Ahn J., et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 2021;22:1–11. doi: 10.1186/s13059-021-02389-w. [PMC free article] [PubMed] [CrossRef] []

251. Song J., Yang D., Xu J., Zhu T., Chen Y.E., Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 2016;7:1–7. doi: 10.1038/ncomms10548. [PMC free article] [PubMed] [CrossRef] []

252. Pai S.-Y., Thrasher A.J. Gene therapy for X-linked severe combined immunodeficiency: Historical outcomes and current status. J. Allergy Clin. Immunol. 2020;146:258–261. doi: 10.1016/j.jaci.2020.05.055. [PubMed] [CrossRef] []

253. Kumaki S., Sasahara Y., Kamachi Y., Muramatsu H., Morio T., Goi K., Sugita K., Urabe T., Takada H., Kojima S., et al. B-cell function after unrelated umbilical cord blood transplantation using a minimal-intensity conditioning regimen in patients with X-SCID. Int. J. Hematol. 2013;98:355–360. doi: 10.1007/s12185-013-1408-7. [PubMed] [CrossRef] []

254. Nishimura A., Aoki Y., Ishiwata Y., Ichimura T., Ueyama J., Kawahara Y., Tomoda T., Inoue M., Matsumoto K., Inoue K., et al. Hematopoietic Cell Transplantation with Reduced Intensity Conditioning Using Fludarabine/Busulfan or Fludarabine/Melphalan for Primary Immunodeficiency Diseases. J. Clin. Immunol. 2021:1–14. doi: 10.1007/s10875-021-00966-z. [PubMed] [CrossRef] []

255. Ngwube A., Shah N., Godder K., Jacobsohn D., Hulbert M.L., Shenoy S. Abatacept is effective as GVHD prophylaxis in unrelated donor stem cell transplantation for children with severe sickle cell disease. Blood Adv. 2020;4:3894–3899. [PMC free article] [PubMed] []

256. Khandelwal P., Yeh R.F., Yu L., Lane A., Dandoy C.E., El-Bietar J., Davies S.M., Grimley M.S. Graft-versus-host Disease Prophylaxis with Abatacept Reduces Severe Acute Graft-versus-host Disease in Allogeneic Hematopoietic Stem Cell Transplant for Beta-thalassemia Major with Busulfan, Fludarabine, and Thiotepa. Transplantation. 2021;105:891–896. doi: 10.1097/TP.0000000000003327. [PubMed] [CrossRef] []

257. Abadir E., Silveira P.A., Gasiorowski R.E., Ramesh M., Romano A., Mekkawy A.H., Lo T.-H., Kabani K., Sutherland S., Pietersz G.A., et al. Targeting CD300f to enhance hematopoietic stem cell transplantation in acute myeloid leukemia. Blood Adv. 2020;4:1206–1216. doi: 10.1182/bloodadvances.2019001289. [PMC free article] [PubMed] [CrossRef] []

258. Russkamp N.F., Myburgh R., Kiefer J.D., Neri D., Manz M.G. Anti-CD117 immunotherapy to eliminate hematopoietic and leukemia stem cells. Exp. Hematol. 2021;95:31–45. doi: 10.1016/j.exphem.2021.01.003. [PubMed] [CrossRef] []

259. Gao C., Schroeder J.A., Xue F., Jing W., Cai Y., Scheck A., Subramaniam S., Rao S., Weiler H., Czechowicz A., et al. Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Adv. 2019;3:2700–2711. doi: 10.1182/bloodadvances.2019000516. [PMC free article] [PubMed] [CrossRef] []

260. Chaudhury S., Ayas M., Rosen C., Ma M., Viqaruddin M., Parikh S., Kharbanda S., Chiang K., Haight A., Bhatia M., et al. A Multicenter Retrospective Analysis Stressing the Importance of Long-Term Follow-Up after Hematopoietic Cell Transplantation for β-Thalassemia. Biol. Blood Marrow Transplant. 2017;23:1695–1700. doi: 10.1016/j.bbmt.2017.06.004. [PubMed] [CrossRef] []

261. Hsieh M.M., Kang E.M., Fitzhugh C.D., Link M.B., Bolan C.D., Kurlander R., Childs R.W., Rodgers G.P., Powell J.D., Tisdale J.F. Allogeneic Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease. N. Engl. J. Med. 2009;361:2309–2317. doi: 10.1056/NEJMoa0904971. [PMC free article] [PubMed] [CrossRef] []

262. Pierce G.F. Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia. 2021;27:103–113. doi: 10.1111/hae.14023. [PubMed] [CrossRef] []

263. Scala S., Basso-Ricci L., Dionisio F., Pellin D., Giannelli S., Salerio F.A., Leonardelli L., Cicalese M.P., Ferrua F., Aiuti A., et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 2018;24:1683–1690. doi: 10.1038/s41591-018-0195-3. [PubMed] [CrossRef] []

264. Cornu T.I., Mussolino C., Cathomen T. Refining strategies to translate genome editing to the clinic. Nat. Med. 2017;23:415–423. doi: 10.1038/nm.4313. [PubMed] [CrossRef] []

265. Cromer M.K., Vaidyanathan S., Ryan D.E., Curry B., Lucas A.B., Camarena J., Kaushik M., Hay S., Martin R.M., Steinfeld I., et al. Global Transcriptional Response to CRISPR/Cas9-AAV6-Based Genome Editing in CD34+ Hematopoietic Stem and Progenitor Cells. Mol. Ther. 2018;26:2431–2442. doi: 10.1016/j.ymthe.2018.06.002. [PMC free article] [PubMed] [CrossRef] []

266. Mohrin M., Bourke E., Alexander D., Warr M.R., Barry-Holson K., Le Beau M.M., Morrison C.G., Passegué E., Abbas T., Dutta A., et al. Hematopoietic Stem Cell Quiescence Promotes Error-Prone DNA Repair and Mutagenesis. Cell Stem Cell. 2010;7:174–185. doi: 10.1016/j.stem.2010.06.014. [PMC free article] [PubMed] [CrossRef] []

267. Anzalone A.V., Koblan L., Liu D.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020;38:824–844. doi: 10.1038/s41587-020-0561-9. [PubMed] [CrossRef] []

268. Uchida N., Nassehi T., Drysdale C.M., Gamer J., Yapundich M., Bonifacino A.C., Krouse A.E., Linde N., Hsieh M.M., Donahue R.E., et al. Busulfan Combined with Immunosuppression Allows Efficient Engraftment of Gene-Modified Cells in a Rhesus Macaque Model. Mol. Ther. 2019;27:1586–1596. doi: 10.1016/j.ymthe.2019.05.022. [PMC free article] [PubMed] [CrossRef] []

269. Chandran S., Tang Q., Sarwal M., Laszik Z.G., Putnam A.L., Lee K., Leung J., Nguyen V., Sigdel T., Tavares E.C., et al. Polyclonal Regulatory T Cell Therapy for Control of Inflammation in Kidney Transplants. Arab. Archaeol. Epigr. 2017;17:2945–2954. doi: 10.1111/ajt.14415. [PMC free article] [PubMed] [CrossRef] []

270. Nagata S., Pastan I. Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics. Adv. Drug Deliv. Rev. 2009;61:977–985. doi: 10.1016/j.addr.2009.07.014. [PMC free article] [PubMed] [CrossRef] []

271. Cyranoski D., Ledford H. Genome-edited baby claim provokes international outcry. Nature. 2018;563:607–608. doi: 10.1038/d41586-018-07545-0. [PubMed] [CrossRef] []

272. MarketsandMarkets Genome Editing Market—Global Forecast to 2025. [(accessed on 14 June 2021)]; Available online: https://www.marketsandmarkets.com/Market-Reports/genome-editing-engineering-market-231037000.html.

273. IMF World Economic Outlook, April 2021: Managing Divergent Recoveries. [(accessed on 19 May 2021)]; Available online: https://www.imf.org/en/Publications/WEO/Issues/2021/03/23/world-economic-outlook-april-2021.

(责任编辑:佳学基因)
顶一下
(0)
0%
踩一下
(0)
0%
推荐内容:
来了,就说两句!
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码: 点击我更换图片

Copyright © 2013-2033 网站由佳学基因医学技术(北京)有限公司,湖北佳学基因医学检验实验室有限公司所有 京ICP备16057506号-1;鄂ICP备2021017120号-1

设计制作 基因解码基因检测信息技术部